FANDOM


(Created page with "<math>d=\Delta t\frac{((\sqrt{k+4F/3\delta p})-(\sqrt{F/\delta p}))}{((\sqrt{k+4F/3\delta p})(\sqrt{F/\delta p}))} </math>where<math>\Delta t=</math>the difference in arrival ...")
 
Line 1: Line 1:
<math>d=\Delta t\frac{((\sqrt{k+4F/3\delta p})-(\sqrt{F/\delta p}))}{((\sqrt{k+4F/3\delta p})(\sqrt{F/\delta p}))}
+
<div style="overflow: auto; border:10px White; -moz-border-radius:10px; -webkit-border-radius:7px; padding:8px; width:90%; background-color:White; Background: margin:10%" >
</math>where<math>\Delta t=</math>the difference in arrival times of the P and S waves, <math>k</math>=the ability of the rock to be compressed, <math>F</math>=the force exerted, <math>\delta</math>=the displacement, <math>\frac{F}{\delta}</math>=the rigitidy of the rock, <math>p</math>=the density of the rock, <math>\sqrt{\frac{k+(4F/3\delta)}{p}}</math>=the velocity of the p waves, and <math>\sqrt{\frac{F/\delta}{p}}</math> is the velocity of the s waves.
+
<center><font size = 75px>Formula for the distance of an an earthquake</font>{{Clear}}<math>d=\Delta t\frac{((\sqrt{k+4F/3\delta p})-(\sqrt{F/\delta p}))}{((\sqrt{k+4F/3\delta p})(\sqrt{F/\delta p}))}
  +
</math><big>where<math>d</math>=the distance of the earthquake, <math>\Delta t</math>=the difference in arrival times of the P and S waves, <math>k</math>=the ability of the rock to be compressed, <math>F</math>=the force exerted, <math>\delta</math>=the displacement, <math>\frac{F}{\delta}</math>=the rigitidy of the rock, <math>p</math>=the density of the rock, <math>\sqrt{\frac{k+(4F/3\delta)}{p}}</math>=the velocity of the p waves, and <math>\sqrt{\frac{F/\delta}{p}}</math> is the velocity of the s waves.

Revision as of 16:07, March 10, 2013

Formula for the distance of an an earthquake

$ d=\Delta t\frac{((\sqrt{k+4F/3\delta p})-(\sqrt{F/\delta p}))}{((\sqrt{k+4F/3\delta p})(\sqrt{F/\delta p}))} $where$ d $=the distance of the earthquake, $ \Delta t $=the difference in arrival times of the P and S waves, $ k $=the ability of the rock to be compressed, $ F $=the force exerted, $ \delta $=the displacement, $ \frac{F}{\delta} $=the rigitidy of the rock, $ p $=the density of the rock, $ \sqrt{\frac{k+(4F/3\delta)}{p}} $=the velocity of the p waves, and $ \sqrt{\frac{F/\delta}{p}} $ is the velocity of the s waves.

Community content is available under CC-BY-SA unless otherwise noted.